Woodthorpe Primary School

Curriculum

DT				
	Design	Make	Evaluate	Technical Knowledge
Nursery (Seasonal Projects)	Making verbal plans and material choices. • Developing a junk model.	Improving fine motor/scissor skills with a variety of materials. • Joining materials in a variety of ways (temporary and permanent). - Joining different materials together. - Describing their junk model, and how they intend to put it together	Giving a verbal evaluation of their own and others' junk models with adult support. - Checking to see if their model matches their plan. Considering what they would do differently if they were to do it again. Describing their favourite and least favourite part of their model.	To know there are a range to different materials that can be used to make a model and that they are all slightly different. - Making simple suggestions to fix their junk model.
Reception	Designing a junk model boat. • Using knowledge from exploration to inform design Discussing what a good design needs. - Designing a simple pattern with paper. • Designing a bookmark. \cdot Choosing from available materials	Making a boat that floats and is waterproof, considering material choices Developing fine motor/cutting skills with scissors. • Exploring fine motor/threading and weaving (under, over technique) with a variety of materials. • Using a prepared needle and wool to practise threading.	Reflecting on a finished product and comparing to their design Making predictions about, and evaluating different materials to see if they are waterproof.	To know that a design is a way of planning our idea before we start. - To know that threading is putting one material through an object. Making predictions about, and evaluating existing boats to see which floats best. - Testing their design and reflecting on what could have been done differently. - Investigating how the shapes and structure of a boat affect the way it moves. To know that 'waterproof' materials are those which do not absorb water.
Year 1	- Learning the importance of a clear design criteria. • Including individual preferences and requirements in a design. Designing smoothie carton packaging by-hand or on ICT software. Using a template to create a design for a puppet.	Chopping fruit and vegetables safely to make a smoothie. • Identifying if a food is a fruit or a vegetable. - Learning where and how fruits and vegetables grow. Making stable structures from card, tape and glue. - Learning how to turn 2D nets into 3D structures. - Following instructions to cut and assemble the supporting structure of a windmill. \cdot Making functioning turbines and axles which are assembled into a main supporting structure. Developing fine motor/cutting skills with scissors. • Exploring fine motor/threading and weaving (under, over technique) with a variety of materials. - Using a prepared needle and wool to practise threading.	Tasting and evaluating different food combinations. - Describing appearance, smell and taste. \cdot Suggesting information to be included on Packaging. Evaluating a windmill according to the design criteria, testing whether the structure is strong and stable and altering it if it isn't • Suggest points for improvements Reflecting on a finished product and comparing to their design.	- Understanding the difference between fruits and vegetables. - To understand that some foods typically known as vegetables are actually fruits (e.g. cucumber) • To know that a blender is a machine which mixes ingredients together into a smooth liquid. - To know that a fruit has seeds and a vegetable does not. - To know that fruits grow on trees or vines. - To know that vegetables can grow either above or below ground. - To know that vegetables can come from different parts of the plant (e.g. roots: potatoes, leaves: lettuce, fruit: cucumber). To know that 'joining technique' means connecting two pieces of material together. - To know that there are various temporary methods of joining fabric by using staples. glue or pins. - To understand that different techniques for joining materials can be used for different purposes. - To understand that a template (or fabric pattern) is used to cut out the same shape multiple times. - To know that drawing a design idea is useful to see how an idea will look. To understand that the shape of materials can be changed to improve the strength and stiffness of structures. - To understand that cylinders are a strong type of structure (e.g. the main shape used for windmills and lighthouses). - To understand that axles are used in structures and mechanisms to make parts turn in a circle. - To begin to understand that different structures are used for different purposes. - To know that a structure is something that has been made and put together.
Year 2	Generating and communicating ideas using sketching and modelling. - Learning about different types of structures, found in the natural world and in everyday objects. Selecting a suitable linkage system to produce the desired motion. - Designing a wheel. - Creating a class design criteria for a moving monster. Designing a moving monster for a specific audience in accordance with a design criteria.	- Making a structure according to design criteria. • Creating joints and structures from paper/card and tape. \cdot Building a strong and stiff structure by folding paper. - Selecting materials according to their characteristics. \bullet Following a design brief. - Making linkages using card for levers and split pins for pivots. Experimenting with linkages adjusting the widths, lengths and thicknesses of card used. - Cutting and assembling components neatly.	- Exploring the features of structures. - Comparing the stability of different shapes. - Testing the strength of own structures. - Identifying the weakest part of a structure. - Evaluating the strength, stiffness and stability of own structure - Evaluating different designs. • Testing and adapting a design - Evaluating own designs against design criteria. • Using peer feedback to modify a final design.	To know that shapes and structures with wide, flat bases or legs are the most stable. - To understand that the shape of a structure affects its strength. - To know that materials can be manipulated to improve strength and stiffess. - To know that a structure is something which has been formed or made from parts. - To know that a 'stable' structure is one which is firmly fixed and unlikely to change or move. - To know that a 'strong' structure is one which does not break easily. - To know that a 'stiff' structure or material is one which does not bend easily - To know that different materials have different properties and are therefore suitable for different uses. -- To know that mechanisms are a collection of moving parts that work together as a machine to produce movement. - To know that there is always an input and output in a mechanism. - To know that an input is the energy that is used to start something working. - To know that an output is the movement that happens as a result of the input. - To know that a lever is something that turns on a pivot. - To know that a linkage mechanism is made up of a series of levers

Year 3	Designing a castle with key features to appeal to a specific person/purpose. - Drawing and labelling a castle design 2 D shapes, labeling: the 3 D shapes that will create the features - materials needed and colours. - Designing and/or decorating a castle tower on CAD software. Creating a healthy and nutritious recipe for a savoury tart using seasonal ingredients, consid smell and appearance of the dish. Problem solving by suggesting which features on a Micro:bit might be useful and justifying my ideas. - Drawing and manipulating 2D shapes, using computer-aided design, to produce a point of sale badge. - Developing design ideas through annotated sketches to create a product concept. Developing design criteria to respond to a design brief.	- Knowing how to prepare themselves and a work space to cook safely in, learning the basic rules to avoid food contamination. \cdot Following the instructions within a recipe Constructing a range of 3D geometric shapes using nets. - Creating special features for individual designs. - Making facades from a range of recycled materials. Following a list of design requirements. - Writing a program to control (button press) and/or monitor (sense light) that will initiate a flashing EED algorithm	- Evaluating own work and the work of others based on the aesthetic of the finished product and in comparison to the original design. Suggesting points for modification of the individual designs. - Establishing and using design criteria to help test and review dishes. Describing the benefits of seasonal fruits and vegetables and the impact on the environment. - Suggesting points for improvement when making a seasonal tart. - Analysing and evaluating wearable technology. \bullet Using feedback from peers to improve design.	- To understand that wide and flat based objects are more stable. - To understand the importance of strength and stiffness in structures. To know that not all fruits and vegetables can be grown in the UK. - To know that climate affects food growth. - To know that vegetables and fruit grow in certain seasons. - To know that cooking instructions are known as a 'recipe'. - To know that imported food is food which has been brought into the country. country.. - To understand that imported foods travel from far away and this can negatively impact the environment. - To know that each fruit and vegetable gives us nutritional benefits because they contain vitamins, minerals and - To understand that vitamins, minerals and fibre are important for energy, growth and maintaining health. - To know safety rules for using, storing and cleaning a knife safely. - To know that similar coloured fruits and vegetables often have similar nutritional benefits. To understand that, in programming, a 'loop' is code that repeats something again and again until stopped. \cdot To know that a Micro:bit is a pocket-sized, codeable computer. - To know that a simulator is able to replicate the functions of an existing piece of technology ounderstand hat, in programming, a loop is code that repeats something again and again until stopped. - To know that a Micro:bit is a pocket-sized, functions of an existing piece of technology
Year	Designing a stable pavilion structure that is aesthetically pleasing and selecting materials to create a desired ef Building frame structures designed to support weight. Designing a shape that reduces air resistance. \cdot Drawing a net to create a structure from. \cdot Choosing shapes that increase or decrease speed as a result of air resistance. \cdot Personalising a design. - Designing a torch, giving consideration to the target audience and creating both design and success criteria focusing on features of individual design ideas.	Creating a range of different shaped frame structures. \cdot Making a variety of free standing frame structures of different shapes and sizes. Selecting appropriate materials to build a strong structure and cladding - Reinforcing corners to strengthen a structure. - Creating a design in with materials Measuring, marking, cutting and assembling with increasing accuracy. • Making a model based on a chosen design. A torch with a working electrical circuit and switch. • Using appropriate equipment to cut and attach materials. - Assembling a torch according to the design and success criteria.	Evaluating structures made by the class. - Describing what characteristics of a design and construction made it the most effective. - Considering effective and ineffective designs. Evaluating the speed of a final product based on: the effect of shape on speed and the accuracy of workmanship on performance. Evaluating electrical products. - Testing and evaluating the success of a final product.	To understand what a frame structure is. \cdot To know that a 'free-standing' structure is one which can stand on its own. To understand that all moving things have kinetic energy. \cdot To understand that kinetic energy is the energy that something (object/person) has by being in motion. \cdot To know that air resistance is the level of ragan an object as it is forced through the air. . To understand that will affect how it moves due to air resistance. To understand that electrical conductors are materials which electricity can pass through. - To understand that electrical insulators are materials which electricity cannot pass through. - To know that a battery contains stored electricity that can be used to power products. - To know that an electrical circuit must be complete for electricity to flow. - To know that a switch can be used to complete and break an electrical circuit.
Year	Adapting a traditional recipe, understanding that the nutritional value of a recipe a aters if you remove, substitute or recipe to io incorporate the relevant changes to ingredients. Designing appealing packaging to reflect a recipe. Designing a pop-up book which uses a mixture of structures and mechanisms. \cdot Naming each mechanism, input and output accuraten. Sto accurately. - Storyboarding ideas for a book. Identifing factors that could be changed on existing products and explaining how these would alter the form and function of the product. Developing design criteria based on findings from investigating existing products. - Developing design criteria that clarifies the target user	Cutting and preparing vegetables safely. - Using equipment safely, including knives, hot pans and hobs. - Knowing how to avoid cross-contamination. \cdot Following a step by step method carefully to make a recipe - Following a design brief to make a pop up book, neatly and with focus on accuracy.•Making mechanisms and/or structures using sliders, pivots and folds to produce movement. - Using layers and spacers to hide the workings of mechanical parts for an aesthetically pleasing result - Altering a product's form and function by tinkering with its Configuration. - Making a functional series circuit, incorporating a motor. - Constructing a product with consideration for the design criteria. make the product	- Identifying the nutritional differences between different products and recipes. \cdot Identifying and describing healthy benefits of food groups - Evaluating the work of others and receiving feedback on own work.Suggesting points for improvement. Carry out a product analysis to look at the purpose of a product along with its strengths and weaknesses. - Determining which parts of a product affect its function and which parts affect its form. \cdot Analysing whether changes in configuration positively or negatively affect an whether changes in configuration positively or negatively affect an existing product. \cdot Peer evaluating a set of instructions to build a product.	Techincical- To understand where meat comes from - learning that beef is from cattle and how beef is reared and processed, including key welfare ssues. - To know that I can adapt a recipe to make it healthier by - To know that I can option is. - To understand that 'cross-contamination' means bacteria and germs have been passed onto ready-to-eat foods and it happens when these foods mix with raw meat or unclean objects. Technical -To know that mechanisms control movement. • To understand that mechanisms can be used to change one kind of motion into another. • To understand how to use sliders, pivots and folds to create paper-based mechanisms Technical- To know that series circuits only have one direction for the electricity to flow. • To know when there is a break in a series circuit, all components turn off. • To know that an electric motor converts electrical energy into rotational movement, causing the motor's axle to spin. \cdot To know a motorised product is one which uses a motor to function.
Year 6	Designing a playground featuring a variety of different structures, giving careful consideration to how the structure will be used, considering effective and ineffective designs. Designing a waistcoat in accordance to a specification linked to set of design criteria. - Annotating designs, to explain their decisions - Writing a design brief from information submitted by a client cheria to fulfil the client's reques	-Building a range of play apparatus structures drawing upon new and prior knowledge of structures. . Measuring, marking and cutting wood to create a range of tinuctres. and add decoration to structures. - Using a template when cutting fabric to ensure they achieve the correct shape. - Using pins effectively to secure a template to fabric without creases or bulges. - Marking and cutting fabric accurately, in accordance with their design. - Sewing a strong running stitch, making small, neat stitches and following the edge. - Tying strong knots.Decorating a waistcoat, attaching features (such as appliqué) using thread. - Finishing the waistcoat with a secure fastening (such as buttons) - Learning different decorative stitches. - Seving accurately with evenly spaced, neat stitches with evenly spaced, neat stitches	Improving a design plan based on peer evaluation. \cdot Testing and adapting a design to improve it as it is developed. •Identifying what makes a successful structure. Reflecting on their work continually throughout the design, make and evaluate process. Explaining how my program fits the design criteria and how it would be useful as part of a navigation tool \cdot Developing an awareness of modelling and explain why • Describing how the product concept fits the client's request and how it will benefit the customers • Explaining the key functions in my program, including any additions - Explaining part of a navigation tool •Explaining the key functions and features of	- To know that structures can be strengthened by manipulating materials -To understand that it is important to design clothing with the client/ target customer in mind. - To know that using a template (or clothing pattern) helps to accurataly mark out a design on fabric. - To understand the importance of consistently sized stitches - To know that accelerometers can detect movement \cdot To understand that sensors can be useful in products as they mean the product can function without human input

